

Building Wearable Assistants with First Person (Egocentric Vision): History, Challenges, Opportunities and Applications

Antonino Furnari, Francesco Ragusa

Image Processing Laboratory - http://iplab.dmi.unict.it/

Department of Mathematics and Computer Science - University of Catania

Next Vision s.r.l., Italy

antonino.furnarni@unict.it - http://www.antoninofurnari.it/

francesco.ragusa@unict.it - https://iplab.dmi.unict.it/ragusa/

http://iplab.dmi.unict.it/fpv - https://www.nextvisionlab.it/

Agenda

- 1) Part I: Definitions, motivations, history and research trends [09.00 10.30] Antonino Furnari
 - a) What is first person vision? What is it for?
 - b) What makes it different from third person vision?
 - c) History of First Person Vision: visions, ideas, research, devices;
 - d) Where do we go from here? Research trends, datasets and challenges.

Coffee Break [10.30 – 11.00]

- 2) Part II: Building Blocks for First Person Vision Systems [11.00 12.30] Francesco Ragusa
 - a) EgoData Acquisition & Datasets;
 - b) Fundamental Task in First Person Vision:
 - a) Localization;
 - b) Object Detection and Recognition;
 - c) Egocentric Human-Object Interaction;
 - d) Action/Activities;
 - e) Anticipation.
 - c) Real Application Examples developed at Next Vision;
 - d) Conclusion.

Part 2

Building Blocks for First Person Vision Systems

Data Acquisition

Four things to pay attention to when collecting first person visual data

Video Quality

Field of View

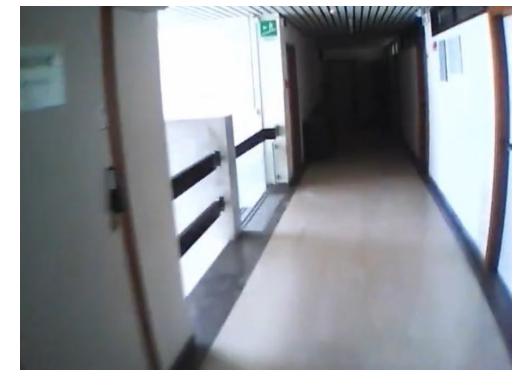
Wearing Modality Other Modalities

Data Acquisition – Video Quality

- Try to get a high quality camera to get high quality images!
- Egocentric video is subject to motion blur and exposure issues.

High Quality Video Obtained with a GoPro

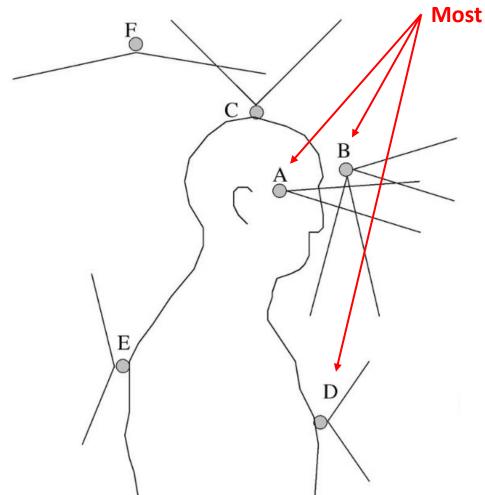
Average Quality Video



Data Acquisition – Camera Wearing Modalities

Mayol-Cuevas, W. W., Tordoff, B. J., & Murray, D. W. (2009). On the choice and placement of wearable vision sensors. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans*, 39(2), 414-425.

Data Acquisition – Camera Wearing Modalities (2)



Most Common Wearing Modalities

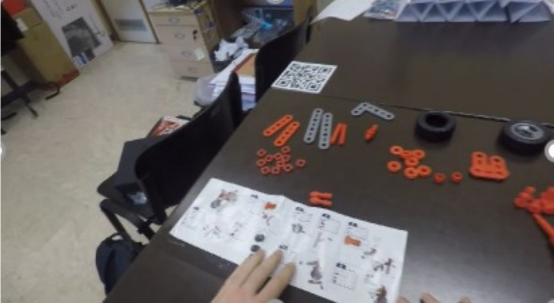
- A-B are best to capture objects:
 - A, B (frontward) to capture objects in front of the subjects (e.g., paintings in a museum);
 - B (downward) to capture objects manipulated with hands (e.g., kitchen);
- Chest-mounted cameras (D) are less obtrusive and give stable video, but they may miss details on what the user is looking at;

Mayol-Cuevas, W. W., Tordoff, B. J., & Murray, D. W. (2009). On the choice and placement of wearable vision sensors. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans*, 39(2), 414-425.

Data Acquisition – Field of View (FOV)

A wide FOV allows to capture more scene but introduces distortion.

Narrow Angle Wide Angle

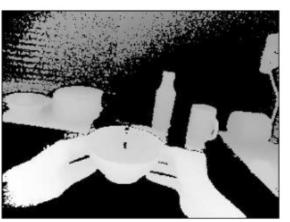


Data Acquisition – Other Modalities – Depth

- If you can acquire depth, do it!
- Depth can improve scene understanding by highlighting the position of objects and hands;



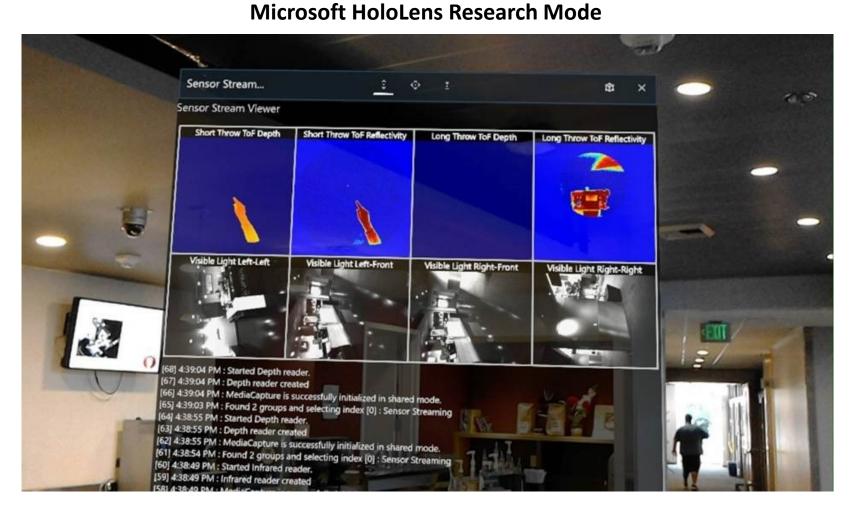




Wan, S., & Aggarwal, J. K. (2015). Mining discriminative states of hands and objects to recognize egocentric actions with a wearable RGBD camera. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops* (pp. 36-43).

Data Acquisition – Other Modalities – Depth (2)

- Microsoft
 HoloLens has a
 «Research Mode»
 which allows to
 access:
 - short-range depth
 - long-range depth;
 - IR reflectivity;



Data Acquisition – Other Modalities – Gaze

Gaze can give information on what the user is paying attention to.

However, gaze trackers generally require a calibration process (and some expertise).

F. Ragusa, A. Furnari, S. Livatino, G. M. Farinella. The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain. WACV 2021 (ORAL) (https://arxiv.org/abs/2010.05654).

Datasets

- If you are trying to solve a specific FPV problem, chances are that someone already collected/labeled data that is suitable for you.
- Search on the internet first!
- In particular, there are quite a few dataset focusing on action/activity recognition;
- In the following, a (non-exhaustive) list of datasets.

Dataset	URL	Settings	Annotations	Goal
EGO4D		inertorming different	Different temporal and spatial annotations related to 5 benchmarks	Episodic Memory, Hand- Object Interaction, Audio-Visual Diarization, Social Interactions, Forecasting
EPIC-KITCHENS-100	https://epic-kitchens.github.io/2020-	Subjects performing unscripted actions in their native kitchens.		Action recognition, detection, anticipation, retrieval.
MECCANO		a toy motorbike.	Temporal segments, active objects, human-	Action recognition, Active object detection, Egocentric Human- Object Interaction Detection
ASSEMBLY101		53 subjects assembling in a cage settings 101 children's toys.	hand noses	Action recognition, Action Anticipation, Temporal Segmentation

Dataset	URL	Settings	Annotations	Goal
EPIC-KITCHENS 2018	https://epic-kitchens.github.io/2018	·	laction segments, object	Action recognition, Action Anticipation, Object Detection
Charade-Ego	https://allenai.org/plato/charades/	paired first-third person videos	action classes	Action recognition
EGTEA Gaze+	Intin://ai stanford edii/~alireza/(alFA/	1	laction segments, gaze.	Understading daily activities, action recognition
ADL	https://www.csee.umbc.edu/~hpirsiav/pape rs/ADLdataset/	idally activities in their	activity segments, objects	Detecting activities of daily living
CMU kitchen	http://www.cs.cmu.edu/~espriggs/cmu- mmac/annotations/	multimodal, 18 subjects cooking 5 different recipes: brownies, eggs, pizza, salad, sandwiche	action segments	Understading daily activities
EgoSeg	http://www.vision.huji.ac.il/egoseg/	Long term actions (walking, running, driving, etc.)	long term activity	Temporal Segmentation, Indexing

Dataset	URL	Settings	Annotations	Goal
First-Person Social Interactions	Inftn://ai stantord edii/~alireza/Disnev/	8 subjects at disneyworld	Activities: walking, waiting, gathering, sitting, buying something, eating, etc.	Recognizing social interactions
UEC Dataset	http://www.cs.cmu.edu/~kkitani/datase ts/	two choreographed datasets with different egoactions (walk, jump, climb, etc.) + 6 youtube sports videos	activities	Unsupervised activity recognition
JPL	http://michaelryoo.com/jpl- interaction.html	iinteraction with a robot	activities performed on the robot + pose	Interaction recognition/prediction
	http://people.sutd.edu.sg/~1000892/da taset		activity (walking, elevator, etc.)	Life-logging
1	ITASET	13 activities performed by 10 subjects (Google Glass)	activity (walking, elevator, etc.)	Life-logging

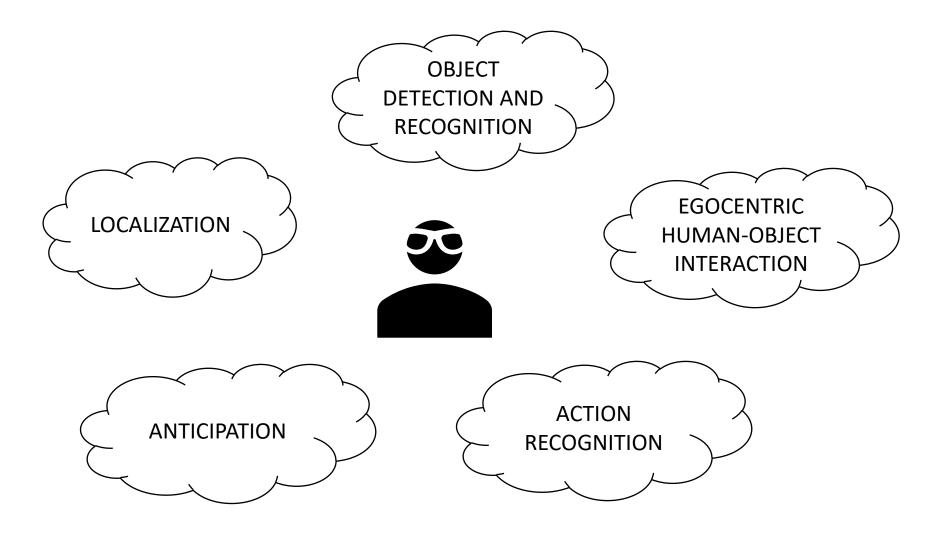
Dataset	URL	Settings	Annotations	Goal
IFPPA	ion.html	INDITATION 5 ASIM	activity (drinking water, putting on clothes, etc.)	Temporal prediction
IIII FONCENTRIC	nttp://vision.cs.utexas.edu/projects/egoce ntric/index.html	3-5 hours long videos capturing a person's day	important regions	Summarization
IVINST/ VISHALDIARIES	http://www.csc.kth.se/cvap/vinst/NovEgo Motion.html	· •	location id, novel egomotion	Novelty detection
Bristol Egocentric Object Interaction (BEOID)	https://www.cs.bris.ac.uk/~damen/BEOID/	1	interaction (pick, plug.	Provide assistance on object usage
		57 sequences of 55 subjects on search and retrieval tasks	gaze	gaze prediction

Dataset	URL	Settings	Annotations	Goal
UNICT-VEDI		1	objects	localizing visitors of a museum and estimating their attention
UNICT-VEDI-POI		different subjects	•	recognizing points of interest observed by the visitors
Simulated Egocentric Navigations	http://iplab.dmi.unict.it/SimulatedEgoc	iot a virtijai agent witnin	3-DOF pose of the agent in each image	egocentric localization
EgoCart	http://iplab.dmi.unict.it/EgocentricSho	collected by a shopping	3-DOF pose of the shopping cart in each image	egocentric localization
Unsupervised Segmentation of Daily Livign Activities		egocentric videos of daily activities	activities	unsupervised segmentation with respect to the activities

Dataset	URL	Settings	Annotations	Goal
Visual Market Basket Analysis	http://iplab.dmi.unict.it/vmba/	egocentric images colelcted by a shopping cart in a retail store	class-location of each image	egocentric localization
		egocentric videos of daily activities	location classes	egocentric localization, video indexing
	inttn://inian.dmi linict it/bersonali oc	egocentric videos clips of daily activities	location classes	recognizing personal locations
EgoGesture	http://www.nlpr.ia.ac.cn/iva/yfzhang/datasets/egogesture.html	2k videos from 50 subjects performing 83 gestures	Gesture labels, depth	Gesture recognition
	http://vision.soic.indiana.edu/projects/egohands/	48 videos of interactions between two people	Hand segmentation masks	Egocentric hand segmentation
	http://www.verlab.dcc.ufmg.br/sema ntic-hyperlapse/cvpr2018-dataset/	80 hours/different activities	Scene/Action labels with IMU, GPS mad depth	Summarization

Dataset	URL	Settings	Annotations	Goal
EGO-HPE	http://imagelab.ing.unimore.it/imagelab2015/researchactivity.asp?idAttivita=23	Egocentric videos for head pose estimation	Head pose of the subjects	Head-pose estimation
EGO-GROUP	http://imagelab.ing.unimore.it/imagelab2015/researchactivity.asp?idAttivita=23	1	Social relationships	Understanding social relationships
DR(eye)VE	http://aimagelab.ing.unimore.it/dreyeve	74 videos of people driving	Eye fixations	Autonomous and assisted driving
THU-READ	http://ivg.au.tsinghua.edu.cn/dataset	8 subjects performing 40 actions with a head- mounted RGBD camera	Action segments	RGBD egocentric action recognition
		1	Temporal segments,	Room-basd localization,
EGO-CH			room-based localization, objects	Object detection, Behavioral analysis

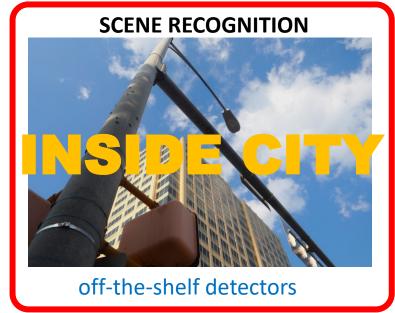
Fundamental Tasks of a First Person Vision System



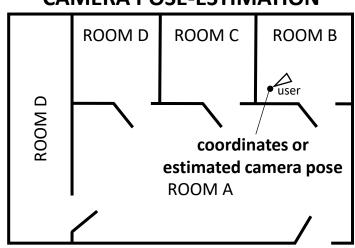
Localization in First Person Vision

- Knowing the location of the user for a First Person Vision system is important to implement contextual awareness
 - Behave differently depending on the environment
 - Generate reminders when I get to a particular place
 - «remember to do the laundary when you get home»;
 - Turn notifications on or off when you are in given environments:
 - Put in silent mode when I am in a conference room;
 - Help localize/navigate the user
 - E.g., in a retail store or in a museum;
 - Implement augumented reality
 - Show location-specific information when I get to a place (e.g., a room in a museum)

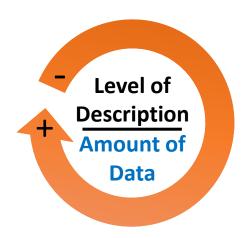
Localization – Levels of Granularity



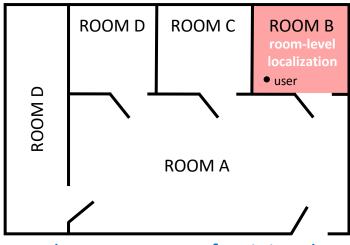
CAMERA POSE-ESTIMATION



3D reconstruction of the building



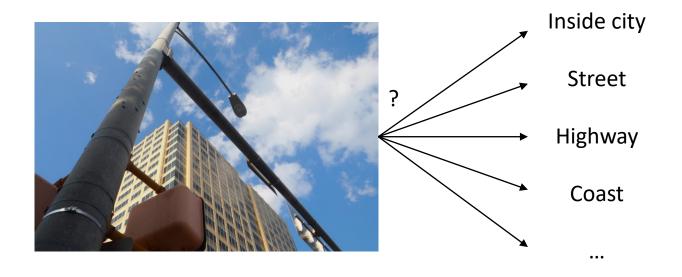
ROOM-LEVEL RECOGNITION



moderate amount of training data

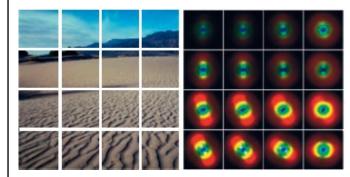
Scene Recognition

- The most basic form of localization;
- Tells what kind of scene the user is in;
- Useful to distinguish between (even for unseen places):
 - indoor/outdoor
 - natural/artificial
 - conf. room
 - Office
- Can use off-theshelf detections.



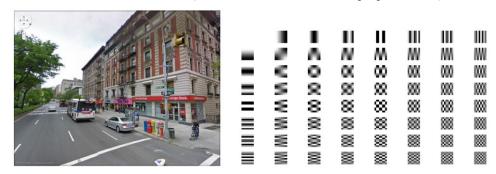
COMPUTATIONALLY INEXPENSIVE ALGORITHMS

GIST Descriptor



Oliva, Aude, and Antonio Torralba. "Modeling the shape of the scene: A holistic representation of the spatial envelope." International journal of computer vision 42.3 (2001): 145-175.

DCT-GIST (runs on the IGP pipeline)



G. M. Farinella, D. Ravì, V. Tomaselli, M. Guarnera, S. Battiato, "Representing scenes for real-time context classification on mobile devices", Pattern Recognition, Elsevier, ISSN 0031-3203, Vol. 48, N. 4, pp. 1082-1096, doi: 10.1016/j.patcog.2014.05.014, 2015

Scene Recognition – Places

GT: cafeteria

top-1: cafeteria (0.179)

top-2: restaurant (0.167)

top-3: dining hall (0.091)

top-4: coffee shop (0.086)

top-5: restaurant patio (0.080)

- Places is a large (10M images 400+ classes) dataset for scene recognition;
- CNN models trained to recognize 365 scene classes available for download;
- Can be used off-the-shelf!

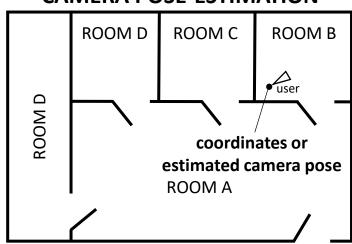
A 10 million Image Database for Scene Recognition B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017

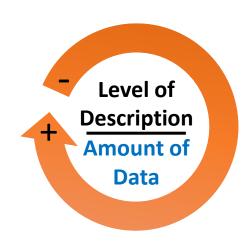
Localization – Levels of Granularity

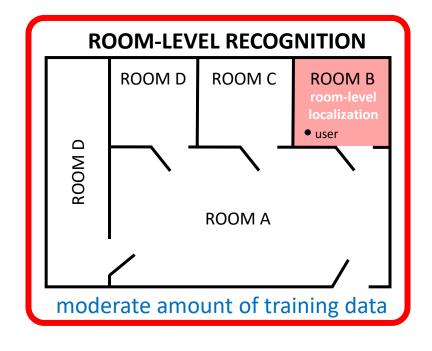
SCENE RECOGNITION

off-the-shelf detectors

CAMERA POSE-ESTIMATION

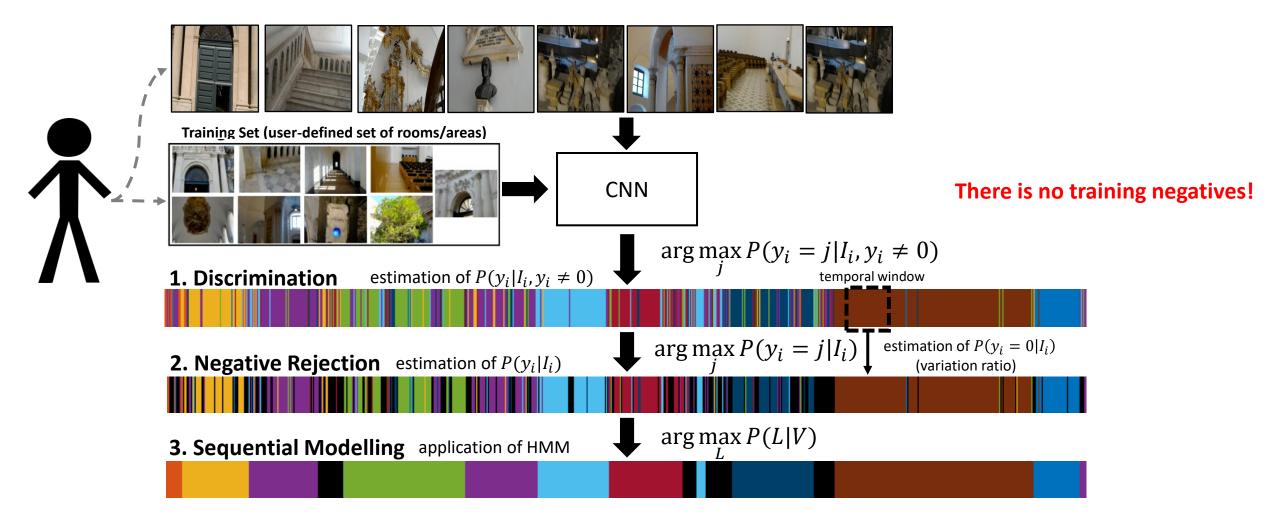






3D reconstruction of the building

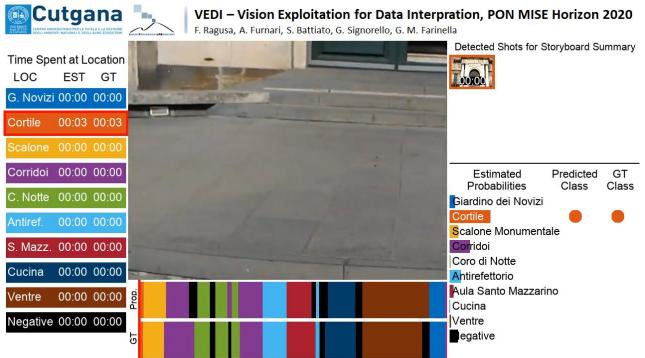
Room-Level Localization — Full Model

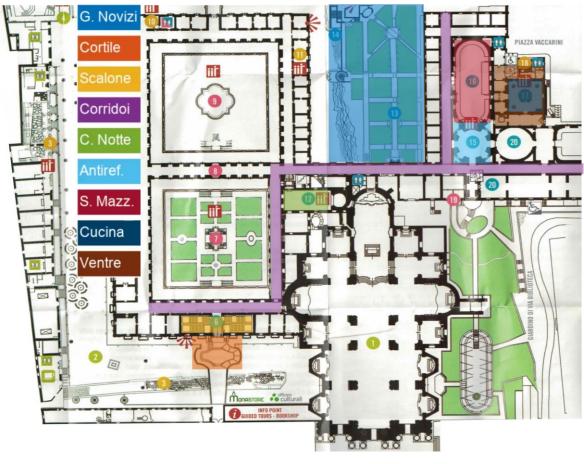


F. Ragusa, A. Furnari, S. Battiato, G. Signorello, G. M. Farinella. Egocentric Visitors Localization in Cultural Sites. In Journal on Computing and Cultural Heritage (JOCCH), 2019.

Room-Level Localization

Localizing the user in a larger environment (e.g., a museum).

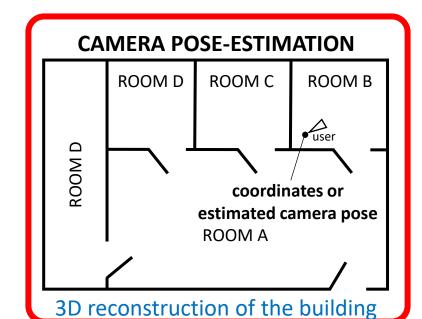


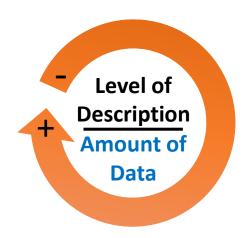


Localization – Levels of Granularity

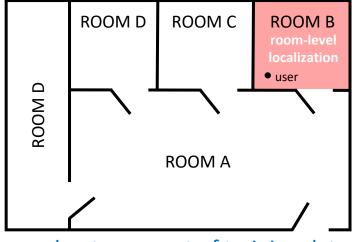
SCENE RECOGNITION

off-the-shelf detectors



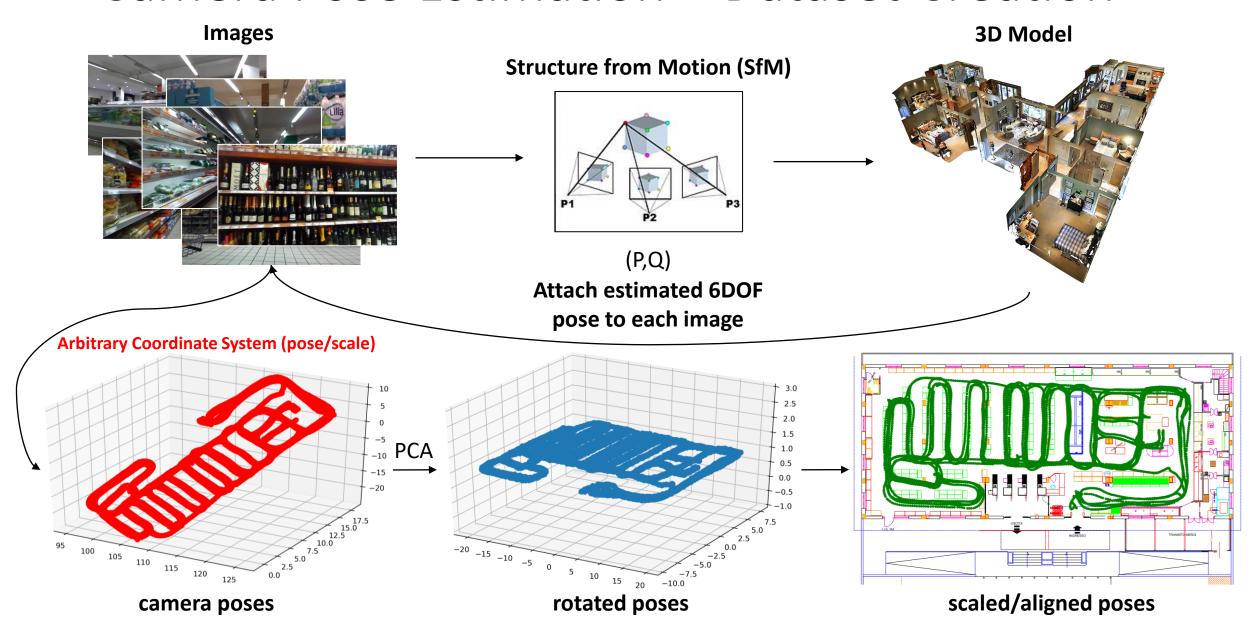


ROOM-LEVEL RECOGNITION



moderate amount of training data

Camera Pose Estimation – Dataset Creation



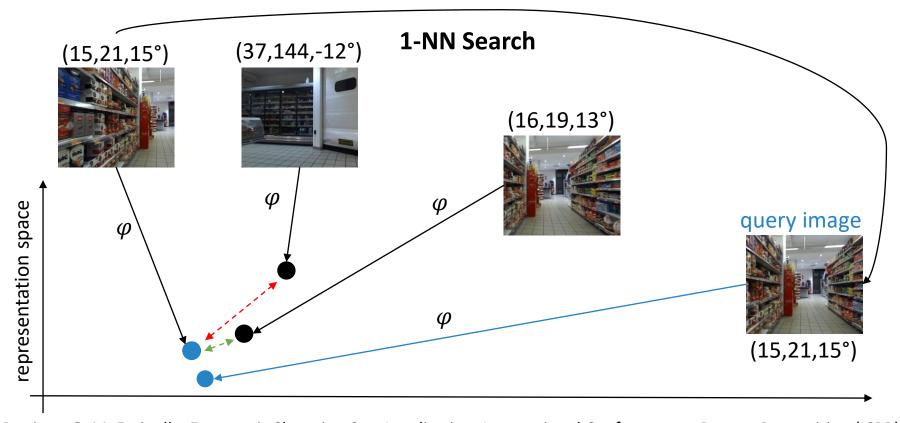
Structure from Motion (SfM) Softwares

Many options available:

- COLMAP (free)
 - https://colmap.github.io/
- Visual SFM (free)
 - http://ccwu.me/vsfm/
- 3D Zephir (paid)
 - https://www.3dflow.net/it/3df-zephyr-pro-3d-models-from-photos/

Camera Pose Estimation – Retrieval Approach

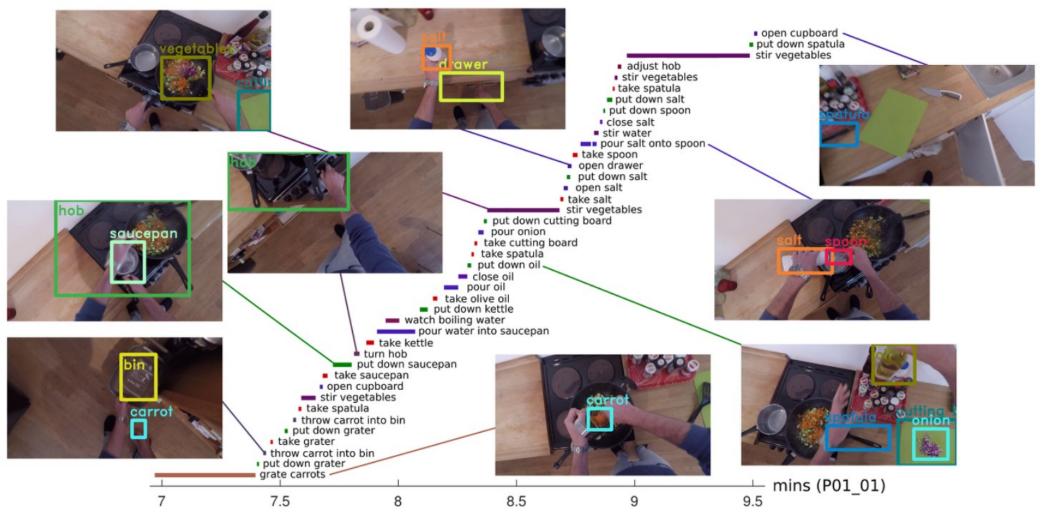
Use deep metric learning to $\underline{\text{learn}}$ a representation function φ which maps close to each other images of nearby locations



E. Spera, A. Furnari, S. Battiato, G. M. Farinella, Egocentric Shopping Cart Localization, International Conference on Pattern Recognition (ICPR), 2018 S. A. Orlando, A. Furnari, S. Battiato, G. M. Farinella. Image-Based Localization with Simulated Egocentric Navigations. VISAPP 2019

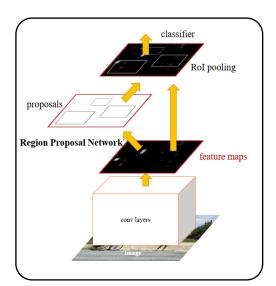
Objects and Actions are tight! Useful to know what is in the scene Useful to know what actions can be performed

Object Detection



D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti, J. Munro and T. Perrett, W. Price, M. Wray (2018). Scaling Egocentric Vision: The EPIC-KITCHENS Dataset. In European Conference on Computer Vision.

Off-the-shelf object detectors



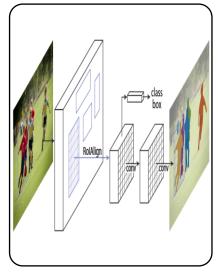
class+box subnets

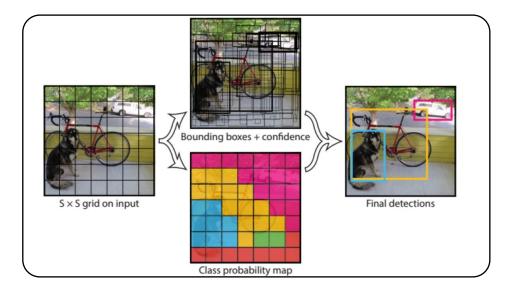
class+box subnets

class+box subnets

class+box subnets

class+box subnets





Faster-RCNN (bounding boxes)

RetinaNet (bounding boxes - faster)

Mask-RCNN (boxes + segments)

YOLO (much faster, but less accurate)

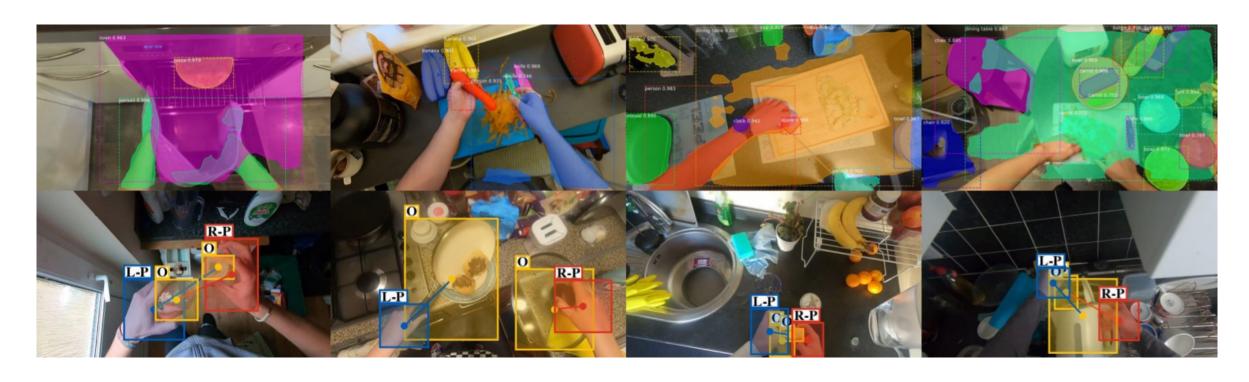
https://github.com/facebookresearch/detectron2

https://pireddie.com/darknet/yolo/

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In *NIPS*. Joseph Redmon, Ali Farhadi, YOLO9000: Better, Faster, Stronger, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017, October). Mask r-cnn. In *Computer Vision (ICCV)*, 2017 (pp. 2980-2988). IEEE.

Off-the-shelf detectors on EPIC-KITCHENS

Depending on the scenario, off-the-shelf detectors can be a starting point, but they are not always accurate.



Damen, Doughty, Farinella, Furnari, Kazakos, Moltisanti, Munro, Price, Wray (2020). Rescaling Egocentric Vision. *arXiv preprint arXiv:2006.13256* (2020).

Train/Finetune your own object detector

https://www.csee.umbc.edu/~hpirsiav/papers/ADLdataset/

https://iplab.dmi.unict.it/EGO-CH/

http://epic-kitchens.github.io/

https://iplab.dmi.unict.it/MECCANO/

- In some scenario, it could be necessary to fine-tune an object-detector with application-specific data.
- Main egocentric datasets providing bounding box annotations.
- EGO4D is multidomain annotated with 295K bounding boxes.

cuboids around objects

Can simulated data help? Simulated Paths Tool to label 3D Scan and simulate (Matterport) 3D Model Real Labelling is one of the most 6-DOF pose Environment [(4.47, 1.67, 2.47);[(5.3, 1.72, -15.06);time-consuming steps! (-0.47, -0.01, 0.87, -0.03)(0.77, 0, -0.63, 0)Auto-Labelled **Dataset**

S. Orlando, A. Furnari, G. M. Farinella (2020). Egocentric Visitor Localization and Artwork Detection in Cultural Sites Using Synthetic Data. Pattern Recognition Letters - Special Issue on Pattern Recognition and Artificial Intelligence Techniques for Cultural Heritage.

Domain Adaptation for Semantic Object Segmentation Dataset

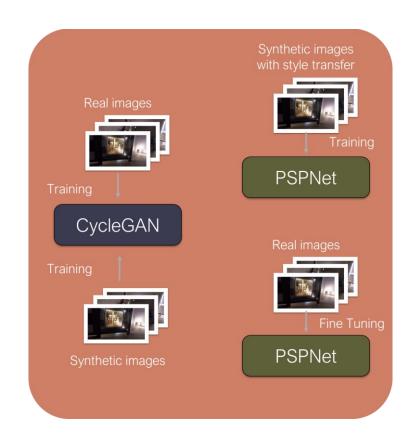
Synthetic Images

Real Images

24 objects, ~25k synthetic images, ~5k real labeled images, semantic segmentations masks

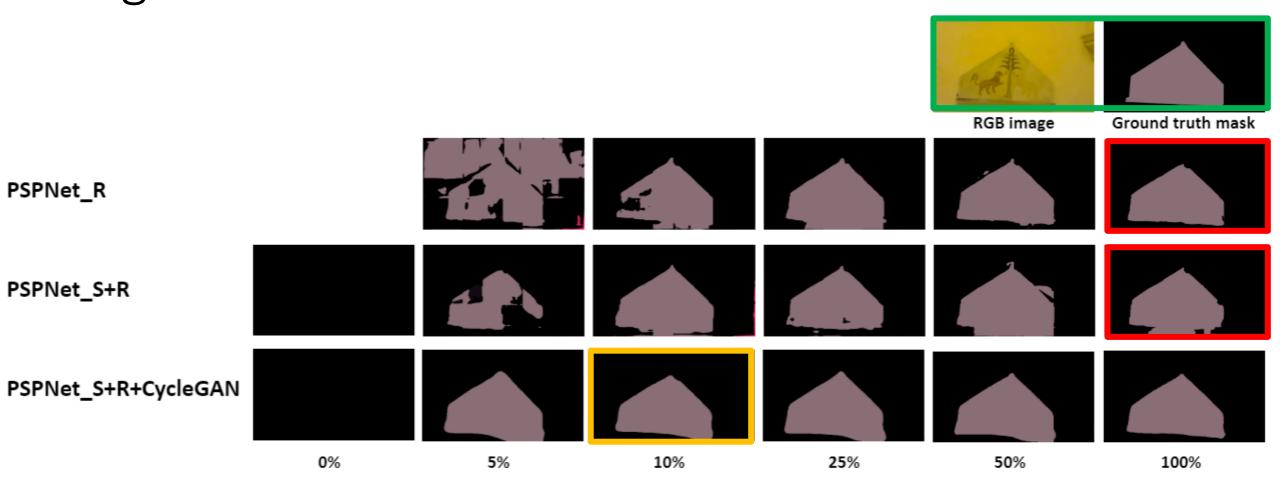
Francesco Ragusa, Daniele DiMauro, Alfio Palermo, Antonino Furnari, Giovanni Maria Farinella (2020). Semantic Object Segmentation in Cultural Sites using Real and Synthetic Data. International Conference on Pattern Recognition (ICPR).

Domain Adaptation for Semantic Object Segmentation Dataset



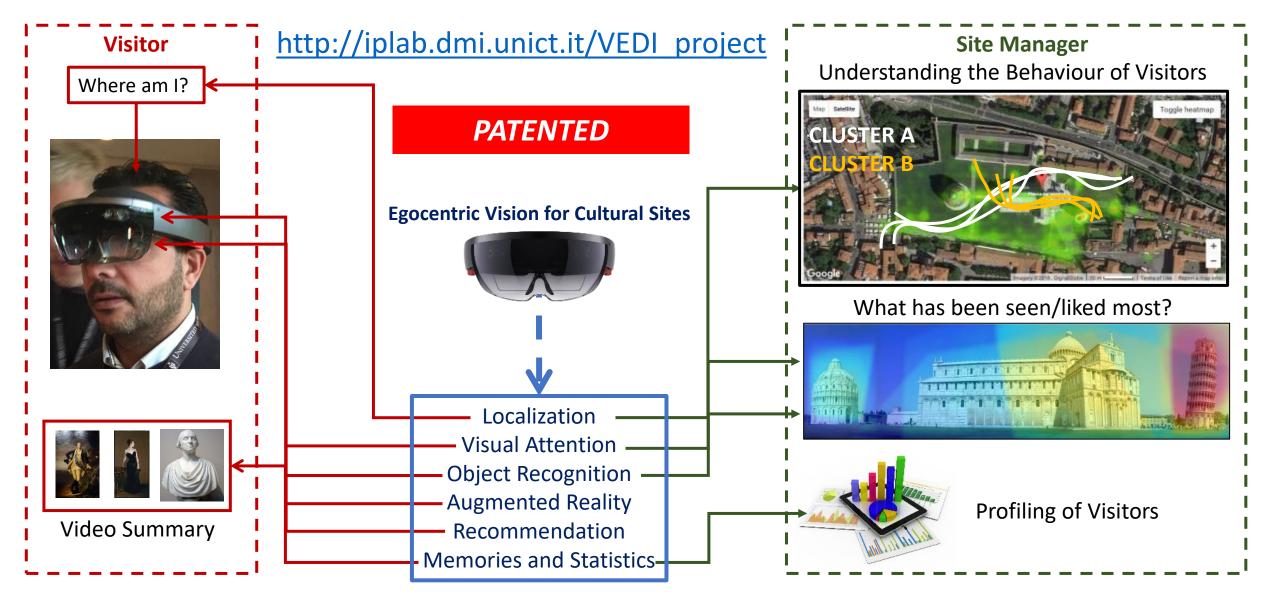
Francesco Ragusa, Daniele DiMauro, Alfio Palermo, Antonino Furnari, Giovanni Maria Farinella (2020). Semantic Object Segmentation in Cultural Sites using Real and Synthetic Data. International Conference on Pattern Recognition (ICPR).

Domain Adaptation for Semantic Object Segmentation Dataset



Francesco Ragusa, Daniele DiMauro, Alfio Palermo, Antonino Furnari, Giovanni Maria Farinella (2020). Semantic Object Segmentation in Cultural Sites using Real and Synthetic Data. International Conference on Pattern Recognition (ICPR).

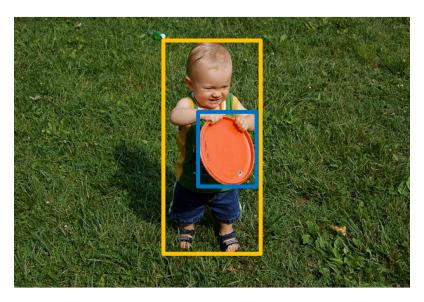
<u>Vision Exploitation for Data Interpretation (VEDI)</u>



G. M. Farinella, G. Signorello, S. Battiato, A. Furnari, F. Ragusa, R. Leonardi, E. Ragusa, E. Scuderi, A. Lopes, L. Santo, M. Samarotto. VEDI: Vision Exploitation for Data Interpretation. In 20th International Conference on Image Analysis and Processing (ICIAP), 2019

Human-Object Interaction

<human, talks, cellphone>

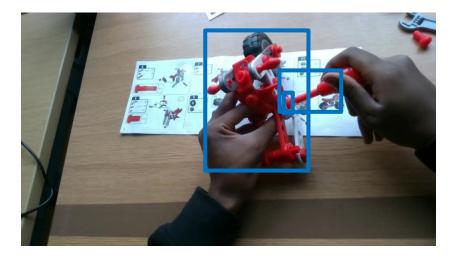


<human, holds, freesbe>

Georgia Gkioxari, Ross Girshick, Piotr Dollàr, Kaiming He. (2018). Detecting Human-Object Interactions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Egocentric Human-Object Interaction

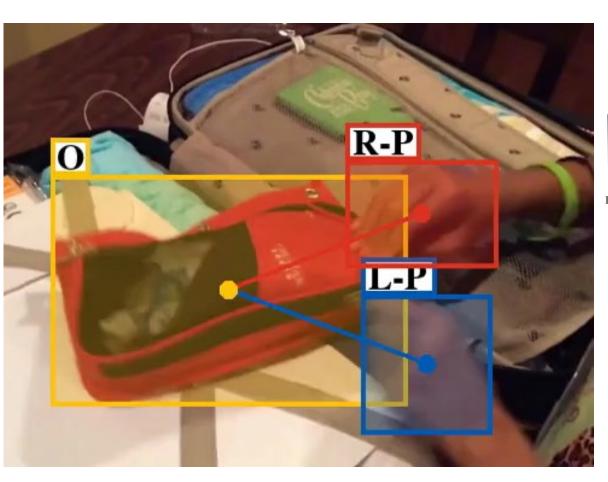
$$m{O} = \{m{o}_1, m{o}_2, \dots, m{o}_n\}$$
 $m{V} = \{m{v}_1, m{v}_2, \dots, m{v}_m\}$ $m{e} = (m{v}_h, \{m{o}_1, m{o}_2, \dots, m{o}_i\})$

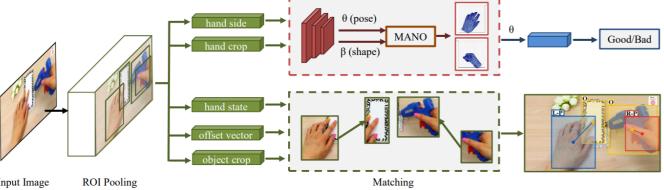


<screw, {screwdriver, screw, partial_model}>

F. Ragusa, A. Furnari, S. Livatino, G. M. Farinella. The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain. In IEEE Winter Conference on Application of Computer Vision (WACV), 2021. **ORAL**

Hands in Contact – Hands + Objects

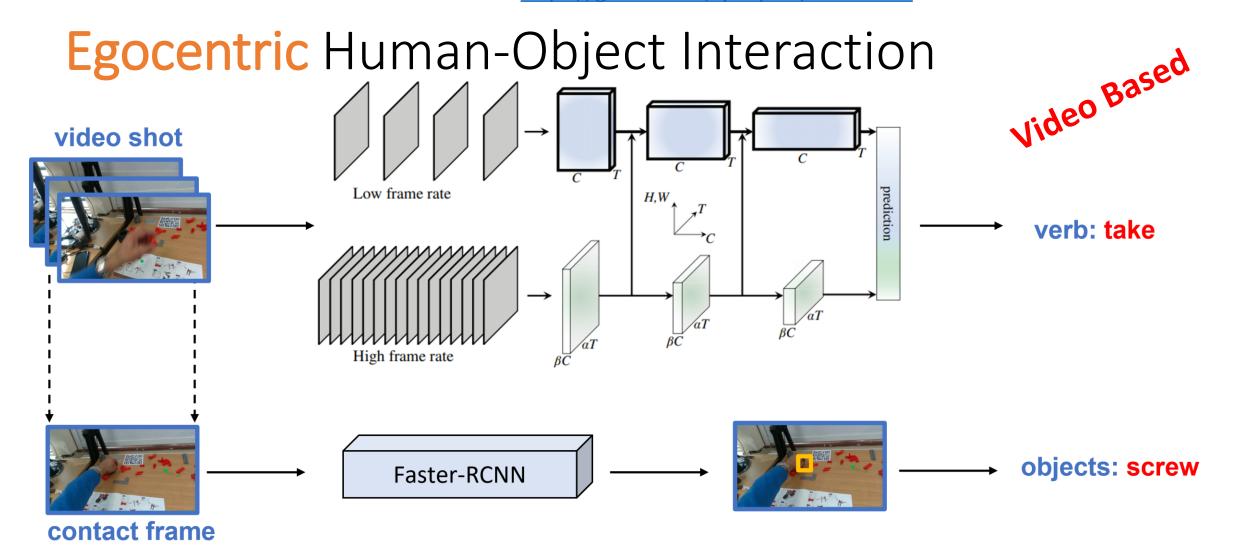




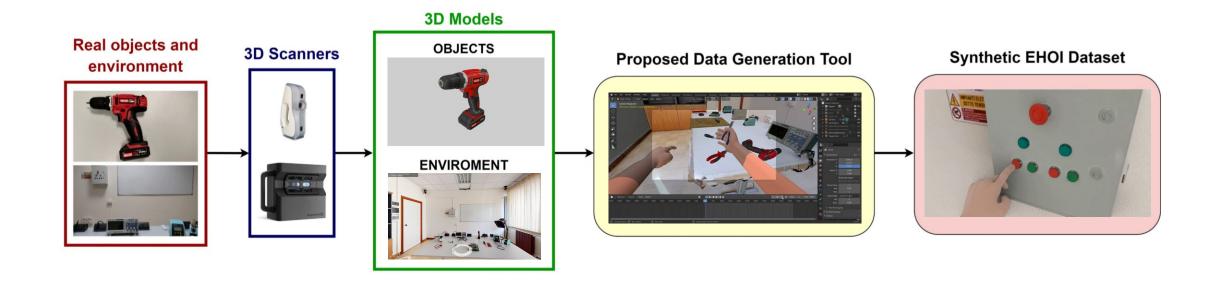
An «augmented» detector which recognizes:

- The left hand;
- The right hand;
- The interacted object.

Shan, D., Geng, J., Shu, M., & Fouhey, D. F. (2020). Understanding human hands in contact at internet scale. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 9869-9878).

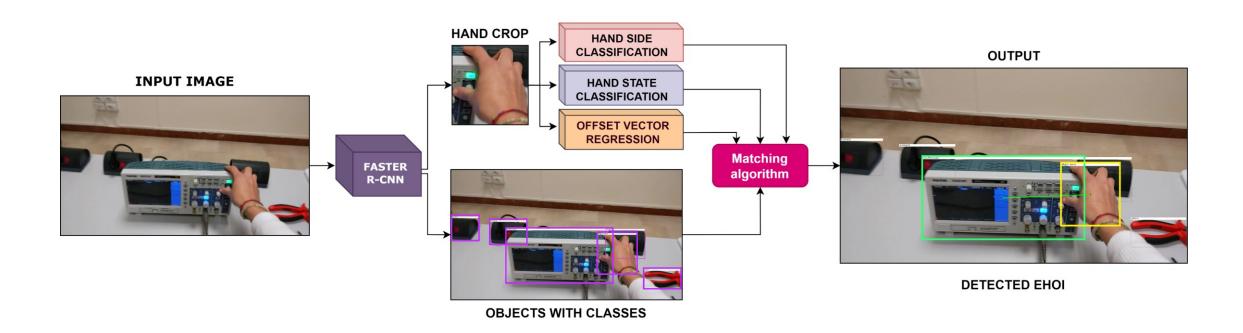


F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

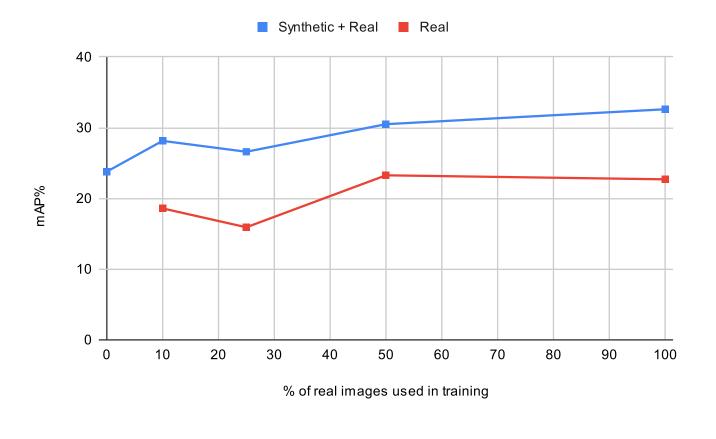


ENIGMA Laboratory

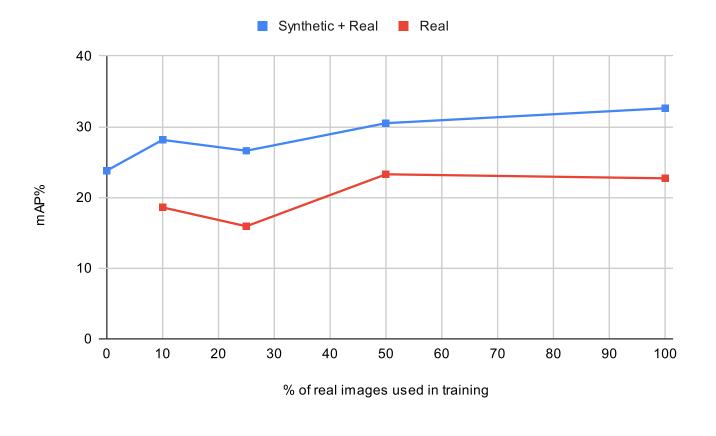
19 objects categories



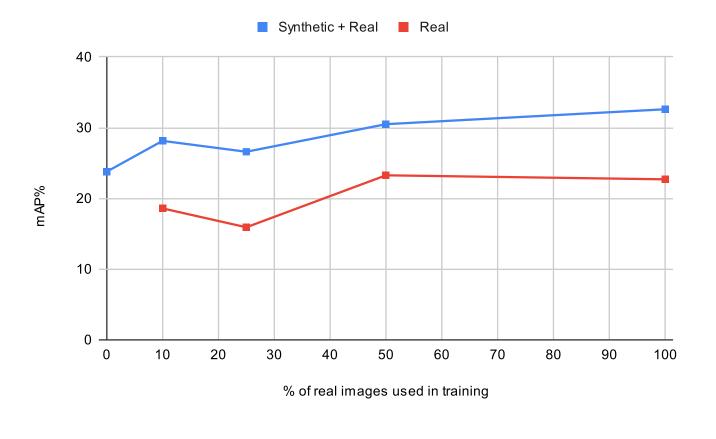
Pretraining	Real Data%	mAP All
Synthetic	0	23.78
-	10	18.59
Synthetic	10	28.14
-	25	15.92
Synthetic	25	26.6
-	50	23.27
Synthetic	50	<u>30.50</u>
-	100	22.7
Synthetic	100	32.61



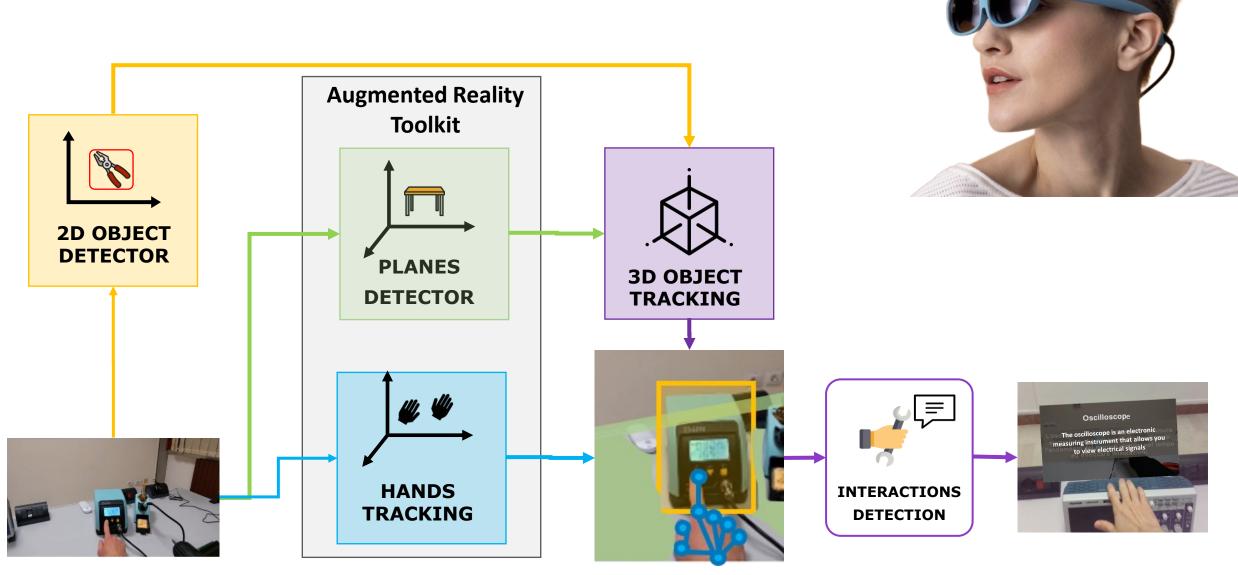
Pretraining	Real Data%	mAP All
Synthetic	0	23.78
-	10	18.59
Synthetic	10	28.14
-	25	15.92
Synthetic	25	26.6
-	50	23.27
Synthetic	50	<u>30.50</u>
-	100	22.7
Synthetic	100	32.61



Pretraining	Real Data%	mAP All
Synthetic	0	23.78
-	10	18.59
Synthetic	10	28.14
-	25	15.92
Synthetic	25	26.6
-	50	23.27
Synthetic	50	<u>30.50</u>
-	100	22.7
Synthetic	100	32.61

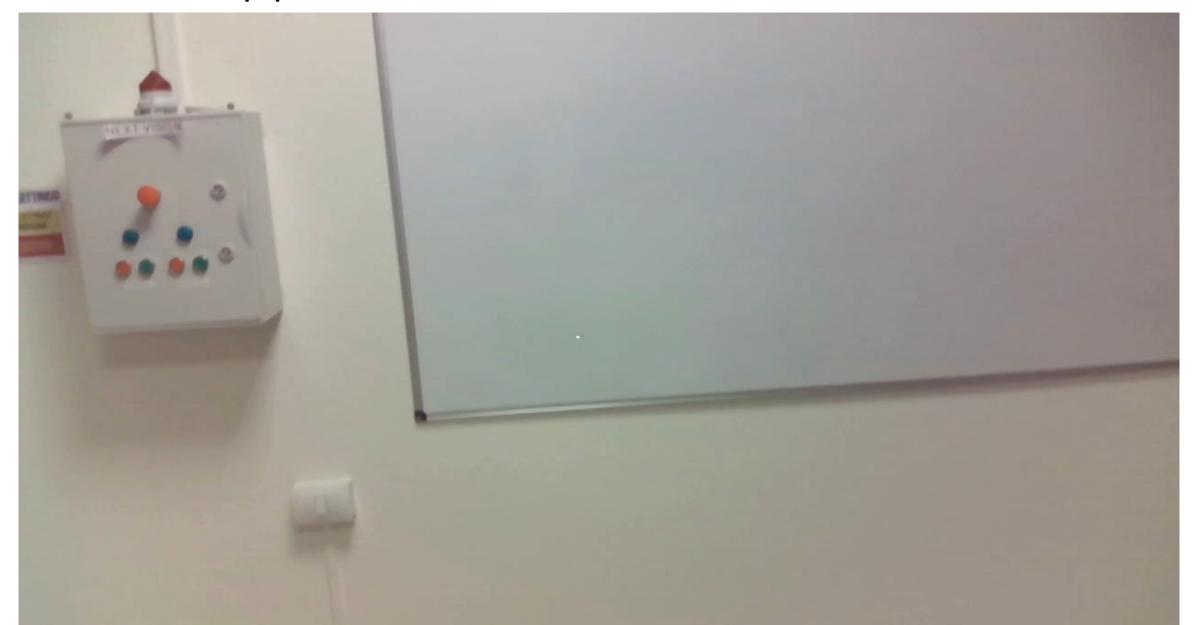


Wearable Application



M. Mazzamuto, F. Ragusa, A. Resta, G. M. Farinella, Antonino Furnari (2023). A Wearable Device Application for Human-Object Interactions Detection. . In International Conference on Computer Vision Theory and Applications (VISAPP) .

Wearable Application



Understanding Actions

- Recognizing and detecting the actions performed by user allows to understand what happens in the video;
- This can be useful to:
 - Segment the video into coherent temporal units for:
 - Summarization;
 - Video understanding;
 - Understand the user's goals to assist them;

Relation between Action and Interaction

TAKE SCREWDRIVER

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Relation between Action and Interaction

TAKE SCREWDRIVER

Start Action

Start Interaction (H-O)

Frame of Contact

Relation between Action and Interaction

TAKE SCREWDRIVER

Start Action

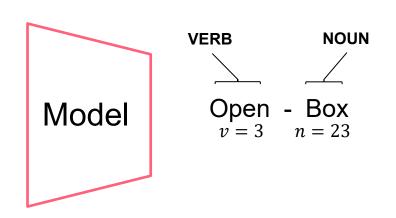
Start Interaction (H-O)

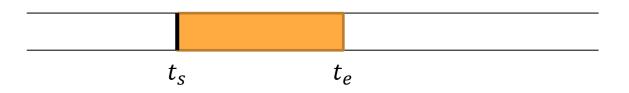
End Action

Frame of Contact

Frame of Decontact

Action Recognition: Task

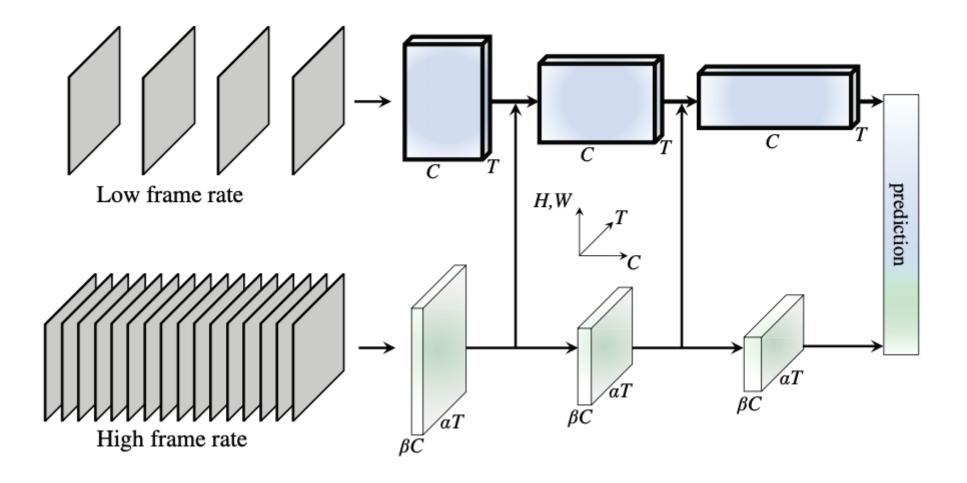




"observe a trimmed segment denoted by start and end time and classify the action present in the clip"

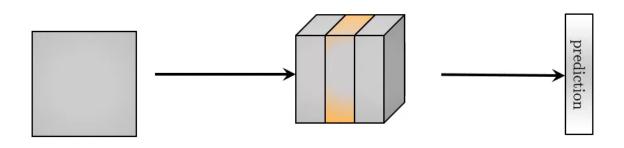
As defined in EPIC-KITCHENS-2020

SlowFast Networks for Video Recognition



Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video recognition. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 6202-6211).

X3D: Expanding Architectures for Efficient Video Recognition



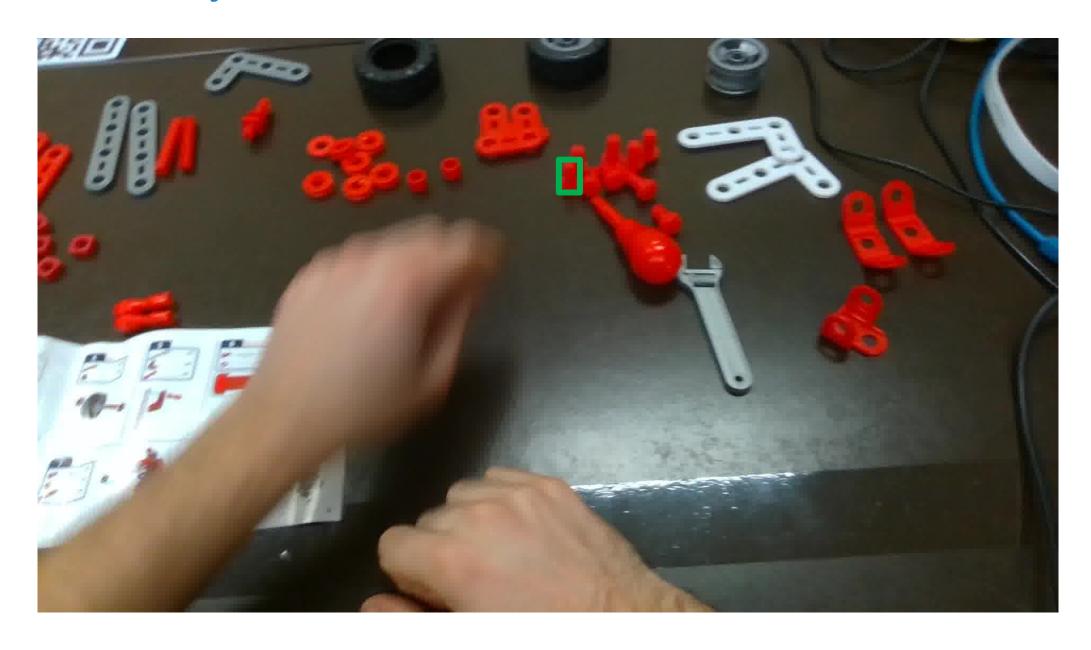
- X-Fast
- X-Temporal
- X-Spatial
- X-Depth
- X-Width
- X-Bottleneck

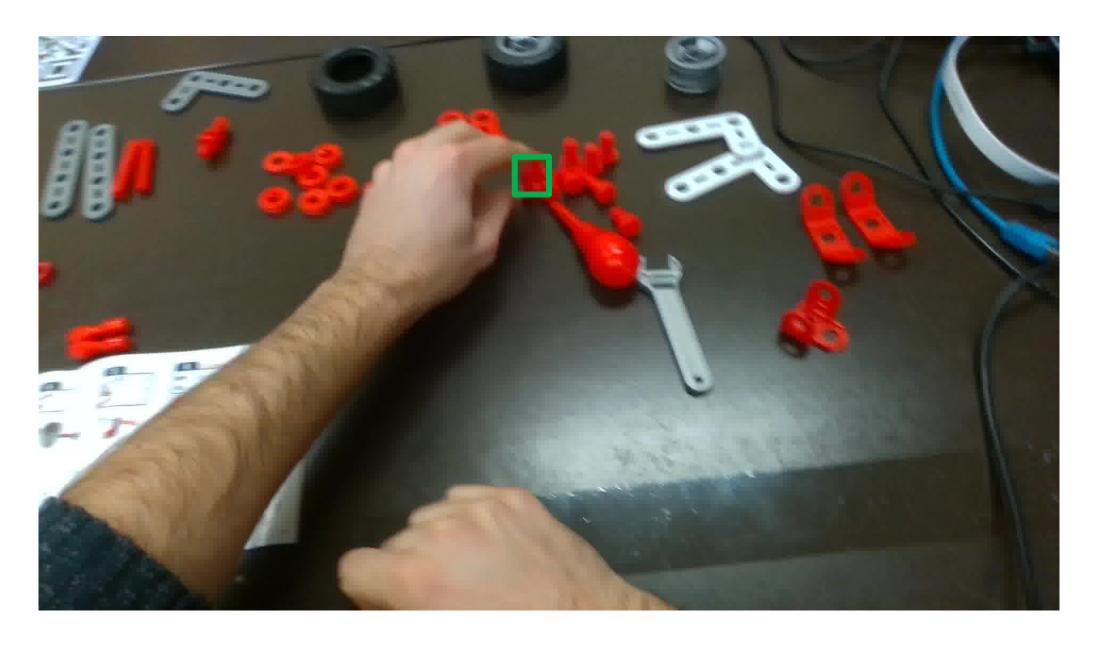
Feichtenhofer, C. (2020). X3D: Expanding Architectures for Efficient Video Recognition. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 200-210.

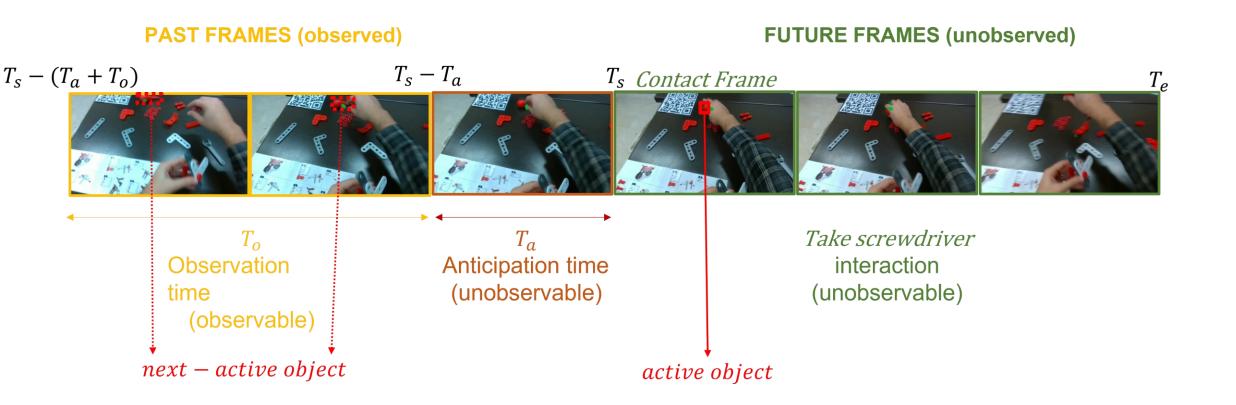
Personal assistants and Future Predictions

Intelligent assistants should be able to understand what are the user's goals and what is going to happen in the future.





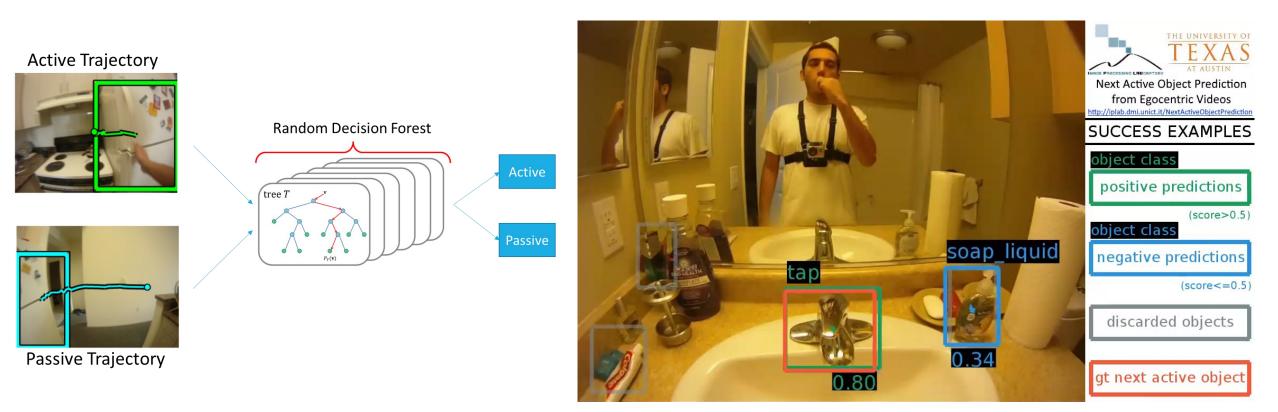




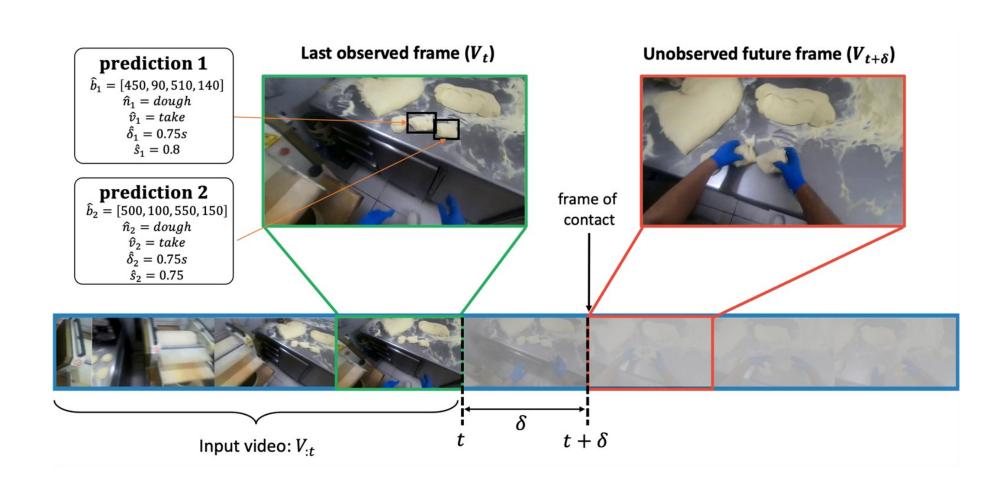
F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Anticipation – Next-Active-Objects

Use egocentric object trajectories to distinguish passive from next-active-objects (i.e., those which will be used soon by the user).

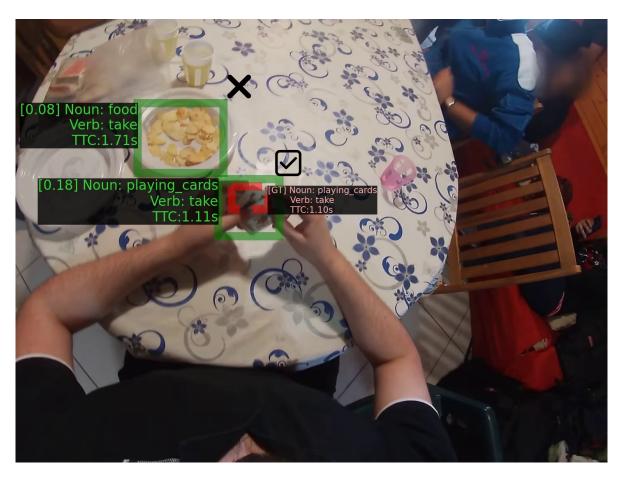


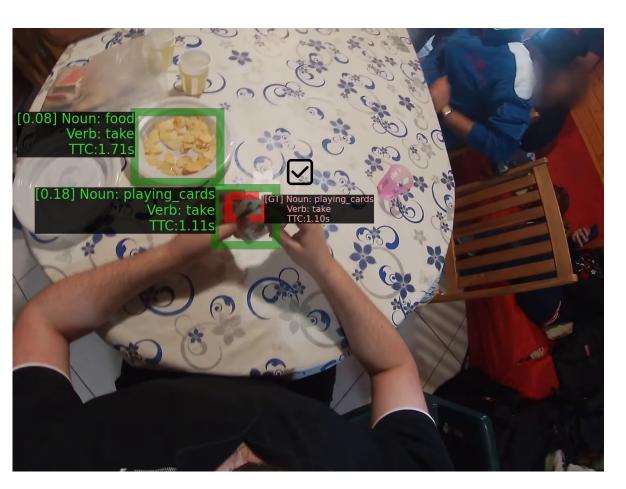
Short Term Object Interaction Anticipation (STA)



Short Term Object Interaction Anticipation (STA)

Top-5 mAP "discounts" up to 4 false positives per GT box





mAP: 1 True Positive + 1 False Positive

Top-5 mAP: 1 True Positive

StillFast residual connection High resolution 2D Feature Stack High resolution image $\Phi_{2D}(V_t)$ Feature Pyramid 2D Backbone Combined Feature Pyramid Layer P_t V_t **Feature** Prediction Conv2D **Pyramid** Head (3x3)Layer Combined $\Phi_{3D}^{2D}(V_{(t-\tau_o):t})$ Feature Pyramid Conv2D (3x3)Fuse 2D and 3D convolutional backbone Temporal mean pooling $V_{(t-\tau_o):t}$ Modified head incl. global **Nearest Neighbor Upsampling** representation and accounting for verb uncertainty 3D Backbone Trainable end2end $\Phi_{3D}(V_{(t-\tau_o):t})$ + 3.17 on verbs Low resolution video + 1.04 on overall Low resolution 3D Feature Stack Code will be made available

F. Ragusa, G. M. Farinella, A. Furnari. StillFast: An End-to-End Approach for Short-Term Object Interaction Anticipation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023.

Can we bring egocentric vision to industry?

Next-active-object: **LOCKER**Next action: **OPEN LOCKER**

 The factory is a natural place for a wearable assistant;

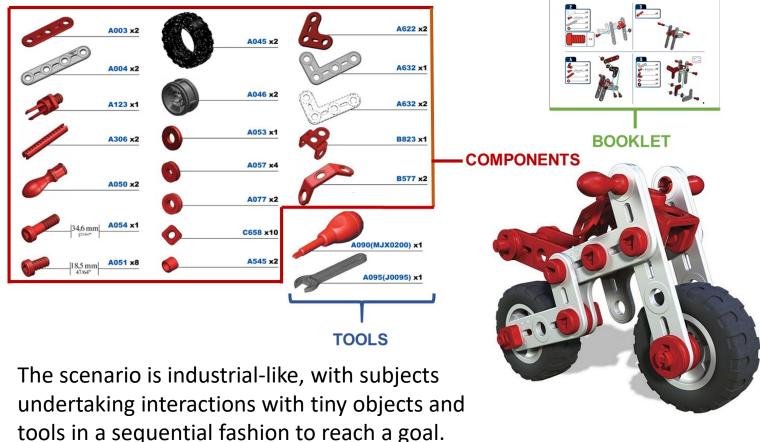
Closed-world assumption;

 Current research has considered different scenarios;

No datasets in industrial-like scenarios;

We asked subjects to record egocentric videos while assembling a toy motorbike.

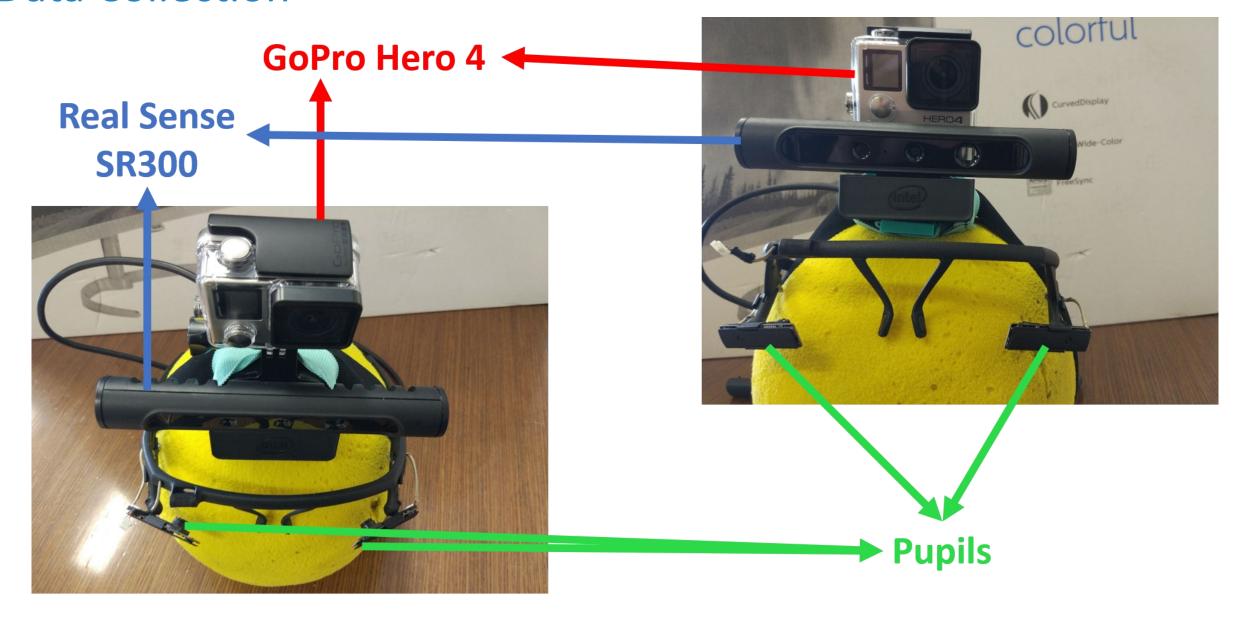
The assembly required to interact with several parts and two tools.



F. Ragusa, A. Furnari, S. Livatino, G. M. Farinella. The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain. WACV, 2021 (https://arxiv.org/abs/2010.05654). ORAL.

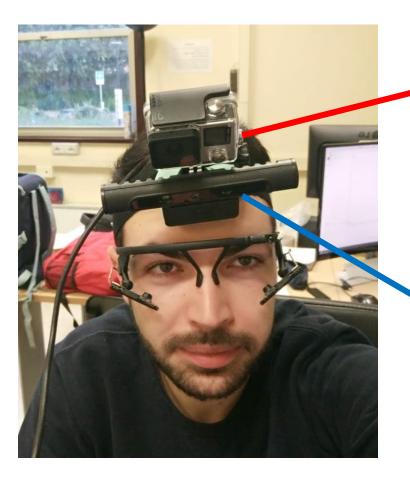
F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Data Collection

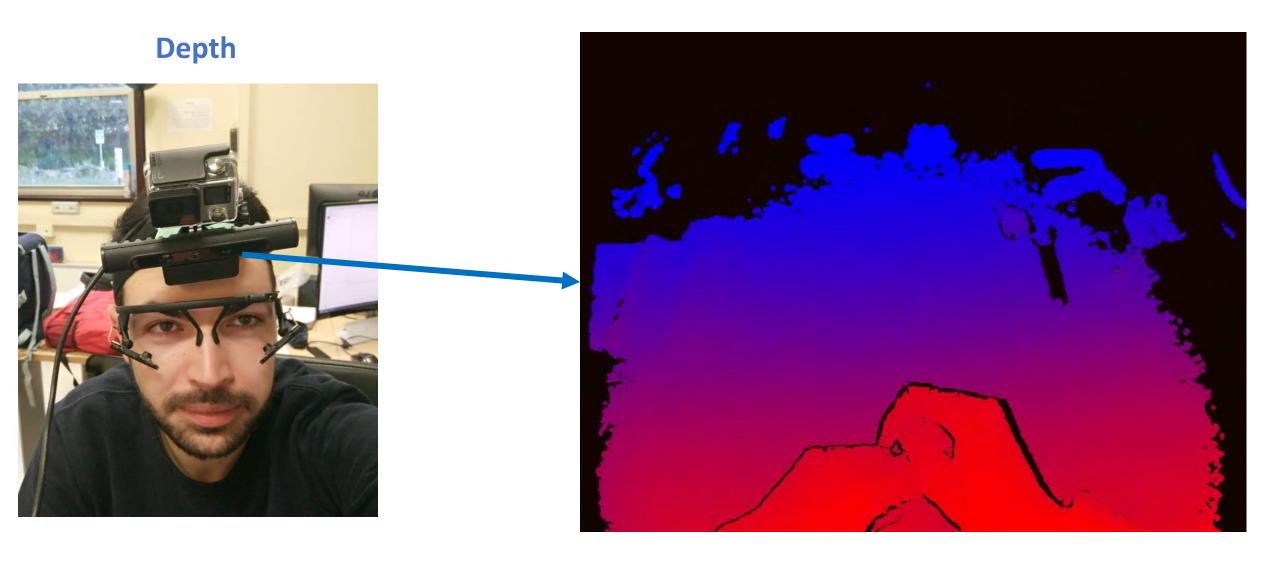


The MECCANO Dataset

RGB



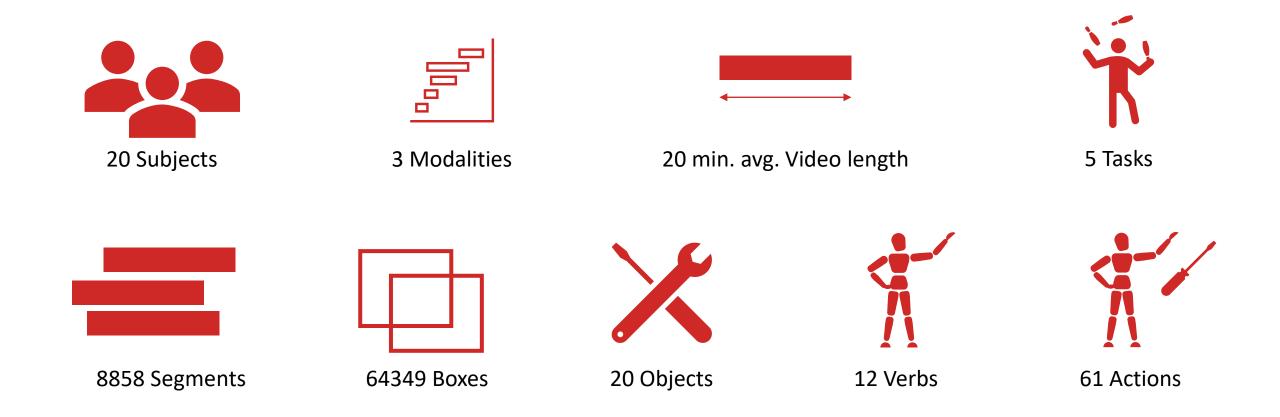
The MECCANO Dataset



The MECCANO Dataset

Gaze

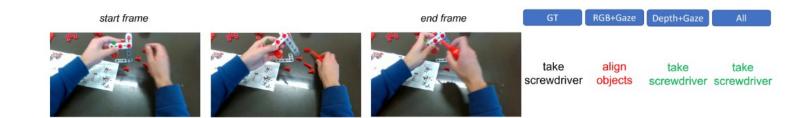
The MECCANO Dataset: Statistics



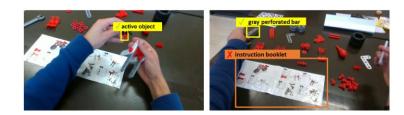
F. Ragusa, A. Furnari, S. Livatino, G. M. Farinella. The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain. WACV, 2021 (https://arxiv.org/abs/2010.05654). ORAL.

The MECCANO Dataset: Tasks

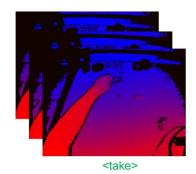
1) Action Recognition



2) Active Object Detection and Recognition



3) EHOI Detection





<gray perforated bar>

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

The MECCANO Dataset: Tasks

4) Egocentric Gaze Estimation

5) Action Anticipation

take bolt, align objects, tighten bolt, plug screw, check booklet

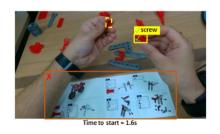
take bolt, align objects plug screw, tighten bolt, check booklet

 τ_a = 1.00

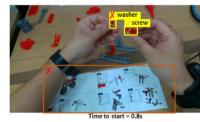
take bolt, align objects, plug screw, check booklet, tighten bolt

take bolt, align objects plug screw, check booklet, take screwdriver

6) Next-Active Object (NAO) Detection



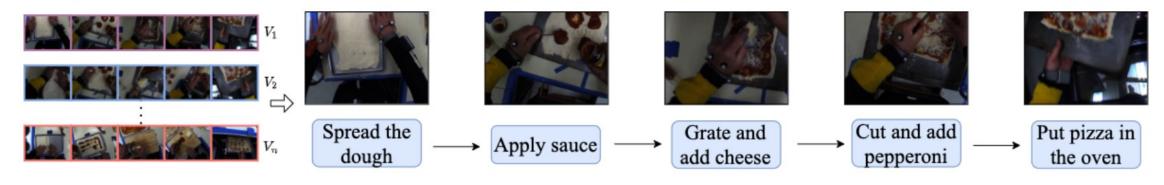
Ground Truth action: take bolt



F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Procedural Learning

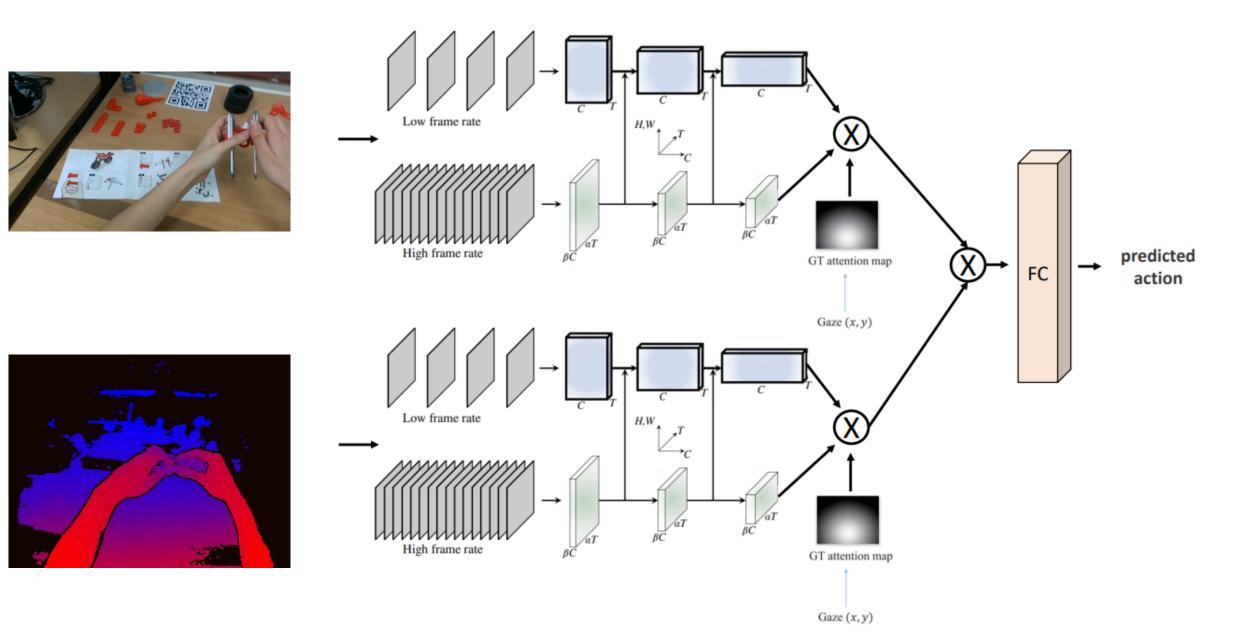
Given multiple videos of a task, the goal is to identify the key-steps and their order to perform the task.



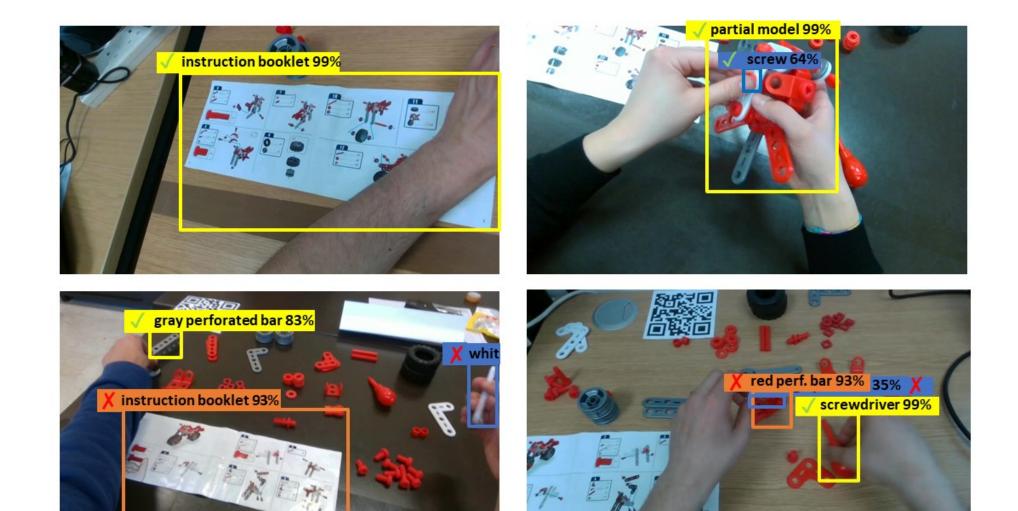
- 1) EgoProceL (proposed) 4) MECCANO
- 2) CMU-MMAC 5) EPIC-Tent
- 3) EGTEA Gaze+

B. Siddhant, A. Chetan, C. V. Jawahar, My View is the Best View: Procedure Learning from Egocentric Videos. In European Conference on Computer Vision (ECCV), 2022.

Action Recognition

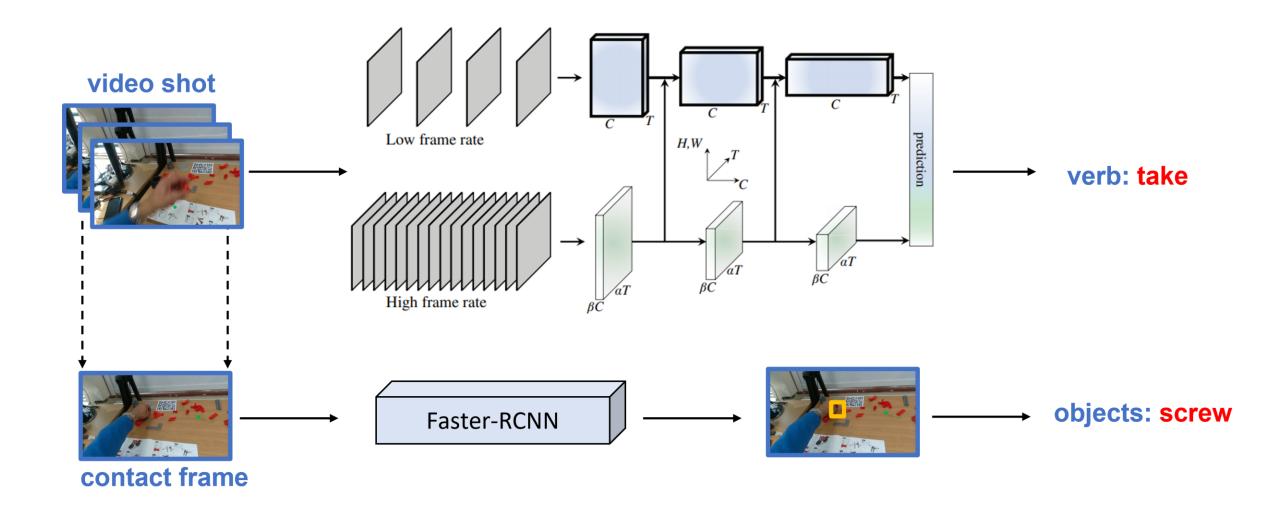


Active Object Detection and Recognition



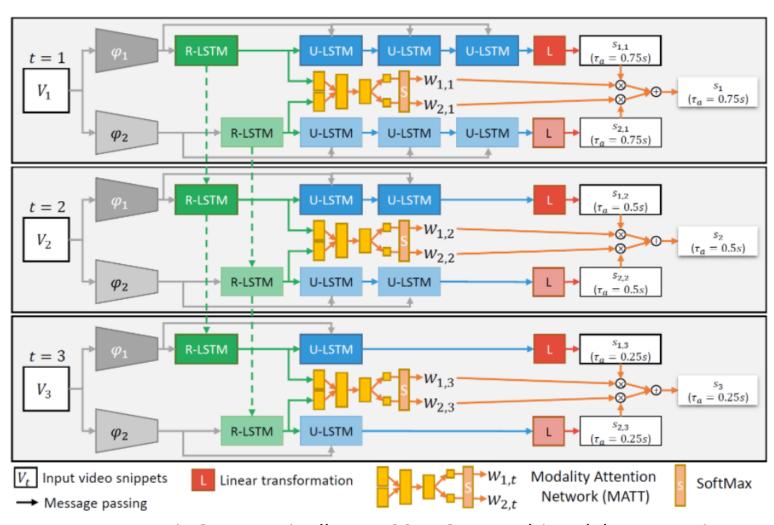
F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

EHOI Detection



F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Action Anticipation



Modalities:

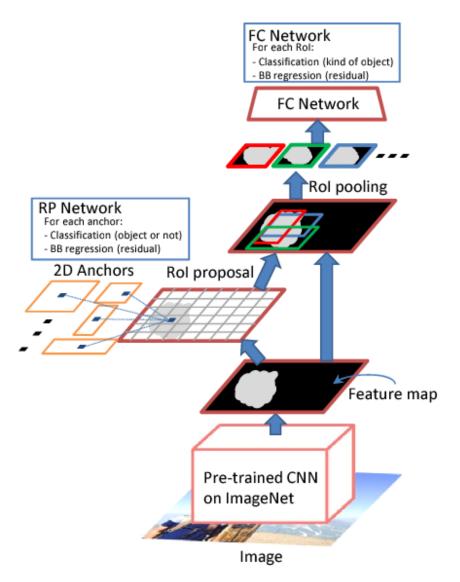
- RGB
- Optical Flow
- Objects

Our Modalities:

- RGB + Flow
- Depth
- Objects
- Hands
- Gaze

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Next-Active Objects Detection



Active Objects

Next-Active Objects

F. Ragusa, A. Furnari, S. Livatino, G. M. Farinella. The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain. In IEEE Winter Conference on Application of Computer Vision (WACV), 2021. **ORAL**

Spin-off of the University of Catania

https://www.nextvisionlab.it/

Innovation

Microsoft HoloLens 2

NREAL LIGHT

Magic Leap 2

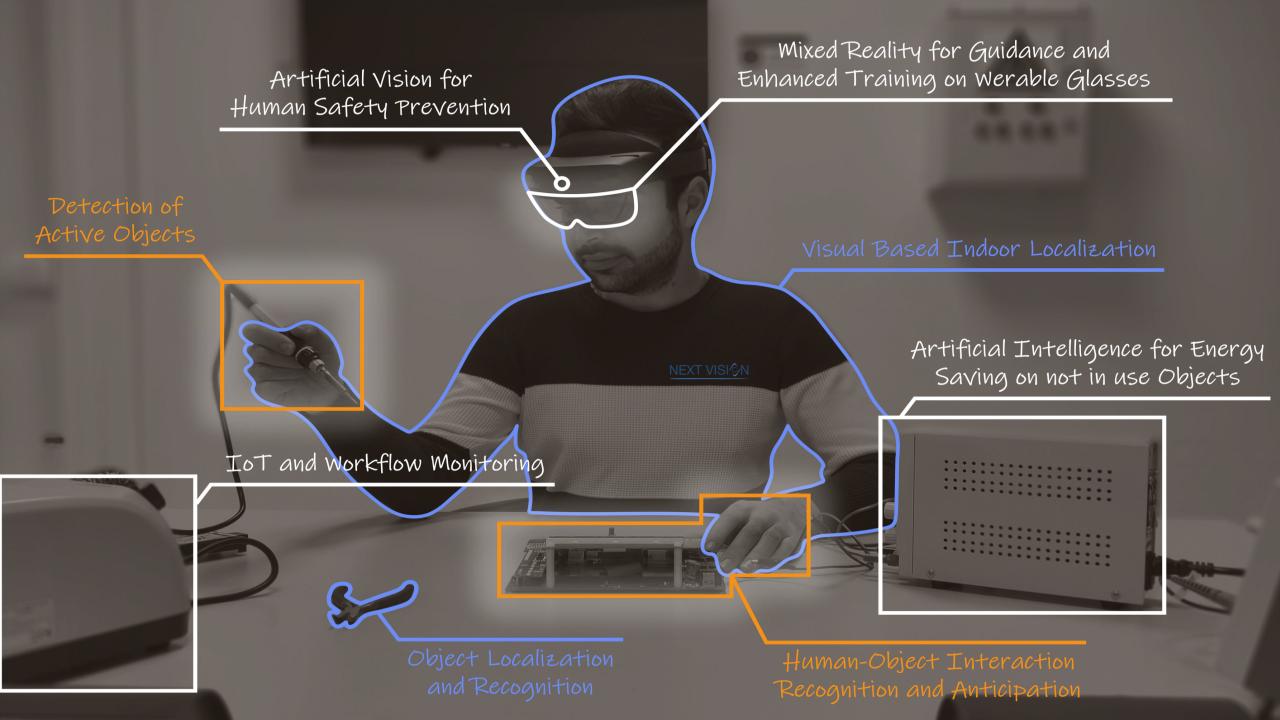
VUZIX BLADE

Smartphone Android

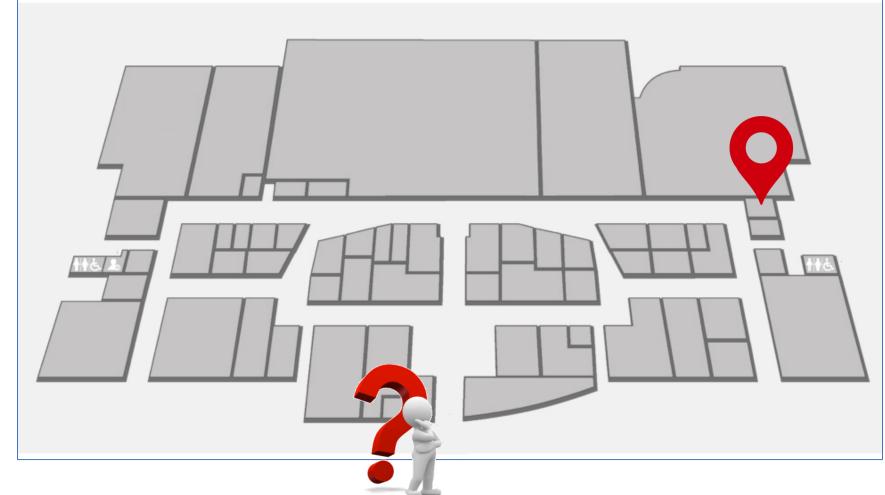
iOS

Tablet Android

Ipad

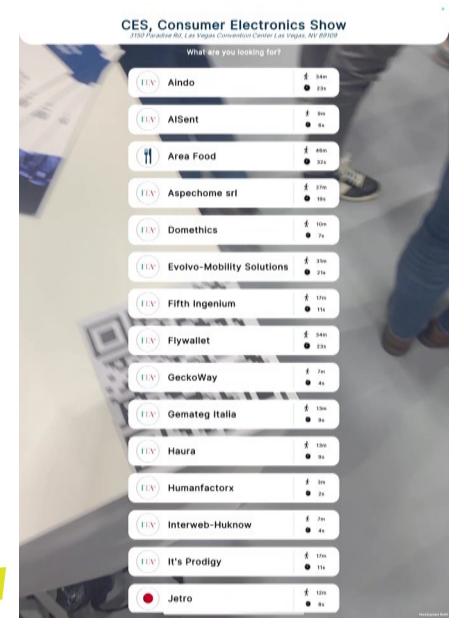


Navigation

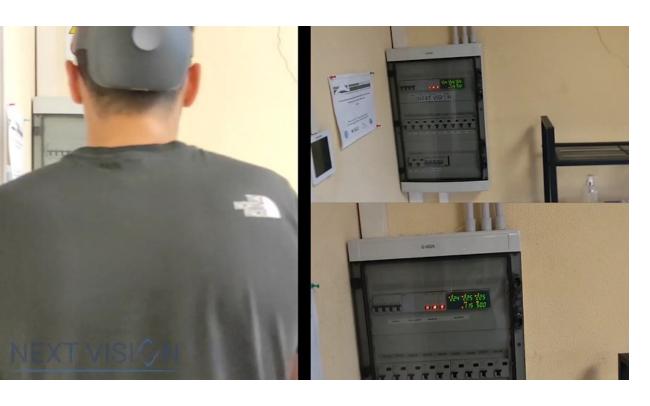


Navigation

NAIROBI



NAOMI



Conclusion

- First Person Vision paves the way to a variety of user-centric applications;
- However, we are still missing solid building blocks related to fundamental problems of First Person Vision such as action recognition, object detection, action anticipation and human-object interaction detection;
- Consumer devices are starting to appear, but the near future of First Person Vision is in focused applications such as the ones in industrial scenarios.

Thank you!

Antonino Furnari

Francesco Ragusa

Building Wearable Assistants with First Person (Egocentric Vision): History, Challenges, Opportunities and Applications

Antonino Furnari, Francesco Ragusa

Image Processing Laboratory - http://iplab.dmi.unict.it/

Department of Mathematics and Computer Science - University of Catania

Next Vision s.r.l., Italy

antonino.furnarni@unict.it - http://www.antoninofurnari.it/

francesco.ragusa@unict.it - https://iplab.dmi.unict.it/ragusa/

http://iplab.dmi.unict.it/fpv - https://www.nextvisionlab.it/